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I. INTRODUCTION

The completed research herein described is concerned with

theoretical/computational modeling of mechanical signal transmission

through soil media from subsurface sources. The propagation of such -

signals plays a central role in detecting or sensing dynamic subsurface

events. A source below the surface will transmit stress waves in all

directions. These waves will interact with the surrounding surface and

any buried objects, and will produce a dynamic wave motion field. By

incorporating a proper measurement field array, data may be gathered on

the field to predict the nature of the source. Mathematical predictions

of both surface and subsurface wave motion patterns would act as a guide

for optimal sensor arrays and logic in order to determine these source

signatures.

The propagation and scattering of elastic waves by cavities and

cracks has been the subject of numerous investigations during the past

several years. Early studies have dealt with the cases of cavities in

infinite media, while more recent work, Sanchez-Sesma [46], Stone et. al.

[50], Mendelsohn et. al. [34], Achenbach and Brind [3), Datta and

El-Akily [18), Shah et. al. [47), and Abduljabbar et. al. [1], has been

directed at scattering problems in semi-infinite domains. For

semi-infinite regions (near field soil modeling) the presence of the free

surface influences the scattering wave field, and this phenomena becomes

important in a wide variety of dynamic geomechanics problems including

seismology, blast loading, sensing, mineral exploration, etc.

Wave propagation problems quickly become difficult to analyze as the

boundary geometry becomes complex. At this point one usually turns to

some numerical method that will approximate the solution for this

geometry. The methods of finite differences and finite elements have

p 1
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become very popular in wave propagation studies. These methods are

sometimes called domain methods because the entire field of the physical

problem is discretized into small areas or cells. For example, Reynolds

[42) and Kelley et. al. [25) have developed finite difference codes for

two-dimensional wave propagation. Other finite difference and finite

element work can be found in Alder [5) which reviews a broad class of

problems. When modeling wave propagation, these domain methods have

limitations in properly representing the boundaries of the body under

study and have trouble if the domains are large or infinite. Bouchon and

Aki in a series of articles [8,9,10] presented an alternate numerical

approach called the discrete wave number representation method. Ray

methods have also been applied for approximate answers to such problems

see for example Achenbach, Gautsen, and McMaken [4].

After a review of these previous techniques one finds several

difficulties associated with each method. Consequently a somewhat new

approach was taken in which a numerical technique was developed based on

an integral formulation of the elastodynamic equations. Integral

formulations in elasticity theory have a long history dating back to the

19th century. However, although such formulations have been known for

quite some time, their application for developing numerical algorithms

for use in problem solutions is relatively new. Recently many

investigators have been employing integral formulations with numerical

methods (including finite element concepts) to solve a broad class of

both static and dynamic elasticity problems. These methods have become

known as the Boundary Integral Equation Method (BIE or BIEM) or the

Boundary Element Method (BEM). The recent texts by Brebbia [11), Brebbia

and Walker [12) and Banerjee and Butterfield [6] provide general

background for these methods as they are applied to a large variety of

]
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engineering science problems.

With regard to elastodynamic problems, Cruse and Rizzo [17) and Cruse

[16) developed a BEM approach in conjunction with Laplace

transformation. Niwa et. al. [39,40) and Kobayashi and Nishimura [27]

used BEM methods for the steady state solution and then reconstructed the

transient response by Fourier synthesis. Shaw [48] also discusses the

steady state solution using a Fourier transform. Cole, Kossloff, and

Minster [15), Mansur and Brebbia [32,33), and Misljenovic [37,38] have

developed a time-dependent formulation which eliminates the need for

Laplace transformation and/or Fourier synthesis. Manolis [31] has

recently compared these three BEM methods on a scattering proble' ., an

infinite medium, and found that all three methods gave good resul'

Using the BEM with transform methods, after one obtains a so', -t-' in

the Laplace or Fourier domain, one must invert it to solve for the time

* domain solution. Transform methods also require the solution of a full

matrix and do not take advantage of the causal properties that the

time-dependent Green's function possesses. The direct BEM time domain

approach has economical advantages because of this, as it permits an

explicit stepping scheme which will result in a banded solution matrix.

Fundamental to the application of the Boundary Element Method is a

* Green's function (fundamental solution) to the governing equations. The

ease and efficiency of the method is connected quite closely with the

nature of the Green's function that is employed. All of the previously

mentioned studies have used the Green's function for an infinite domain,

thus requiring all boundaries to be discretized. Kobayashi and Nishimura

[28] constructed a half-space Green's function for the steady state

elastodynamic case, but did not utilize it. It has been demonstrated by

* Telles and Brebbia [51] for the static elasticity case, that by using a

,, -
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half-space Green's function, considerable simplification is gained for

half-space geomechanics problems. A major goal of this research was to

extend Telles' and Brebbia's idea to dynamic wave propagation phenomena.

This has involved the development of an easily computable Green's

function for a half-space domain, and its implimentation into a general

purpose, two-dimensional boundary element numerical code. The created

numerical methods are designed for half-space problems involving

propagation and scattering of near field transient elastic waves. - --

Solution methods for both anti-plane strain (out-of-plane motions) and

plane strain (in-plane motions) are developed.

IL JVP

II. BASIC ELASTODYNAMIC THEORY

2.1 Basic Equations of Elastodynamics

The basic variables in dynamic elasticity theory are the stresses

oij, the strains e1i and the displacements ui . The general field

equations relate these variables to one another and provide the basis of

the theory (see Achenbach [2], Graff [23] or Ewing et.al. [21]). From

kinematics the strain-displacement relations are given by

e (u + uj,i) (2.1)
i 2 1, j ,

Due to the conservation of linear momentum we can express Newton's law as

the equation of motion for a continum,

oij,j + Pfi Pui' (2.2)

where fi is the body force density and p is the mass density. The

constitutive law for a linear elastic isotropic material is given by

.o~
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Hooke's law as

=ij Xekk6 i + 2pe ij, (2.3)

where x and p are elastic constants. .o

Combining equations (2.1), (2.2), (2.3), we can eliminate the

stresses and strains to get Navier's equation of motion in terms of

displacement

Uikk + (X+P)Uk,ki + Pf. = PU. (2.4)

There are normally three types of boundary conditions prescribed on

the boundary surface of a body.

1) A distribution of surface forces or tractions t, on the surface

of the body, where

ti = ijnj

with ni being the unit normal vector.

2) A distribution of displacements u, on the surface of the body.

3) A distribution of surface forces on a portion of the boundary

surface and displacements on the remaining portion.

These along with initial conditions on the displacement and velocity

provide the necessary conditions which when coupled with the governing

equations produce a unique solution. The proof of this can be found in AL

Wheeler and Sternberg [52] or Sokolnikoff [49].

Al-
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2.2 Dilatation and Shear Wave Motion

If we take the divergence of the equation of motion (2.4) without

body forces, we get an equation .sociated with irrotational wave motion,

i.e.

,0

uCl uik(2.5)ui ,ikk = i '

where ui i is the dilatation (volume changing motion) and cl =

-( x+ 2 I )/ p]l/ 2 . This irrotational or dilatational wave motion is

associated with what is commonly called a P-wave which propagates with

velocity cl..

Taking the curl of equation (2.4) without body forces, we get an

equation associted with rotational wave motion.

Ui ,kk = -2 ui, (2.6)
c2

where c2 = (P/ P )l/2. This rotational (volume preserving motion) or

shear %. ve motion is commonly refered to as an S-wave and propagates with

* velocity c2 .

In an infinite medium an internal input disturbance will in general

produce both dilatation and shear motions. Thus a general disturbance

" will propagate to remote points as two different wave motions.

• '2.3 Helmholtz Decomposition Theorem

The Helmholtz Decomposition Theorem states that a vector field u that

is sufficiently smooth i.e. satisfies certain continuity requirements, -

. may be written as the sum of the gradient of a scalar potential function

plus the curl of a vector function, i.e.
. .'-.
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u V +VxxJ, (2.7)

with the condition

00

Using this form of u as a displacement vector and substituting into

equation (2.4) without body forces, yields

2 11
72 1V 2 ~ (2.8)

14

Note that the displacement potential * is associated with the dilatation p

wave and p is associated with the shear wave.

This decomposition is useful for many elastodynamic problems, since

the complex equation of motion (2.4) is reduced to two simple uncoupled

wave equations. It should be mentioned here however, that the two

potentials are coupled through the boundary conditions since the

displacements and stresses depend on both t and 1 P

2.4 Two Dimensional Elastodynamics

Plane Strain

For bodies that are very long in one direction and loaded in a plane

perpendicular to this direction we can make certain approximations that

will simplify the general equation of motion (2.4). This case is known _.

as plane strain and the displacements are of the form

u = u(x1 ,x2 ,t)

v = V(xlX 2 t) (2.9)

w=

Note that this corresponds to in-plane motions.
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The non-zero strain components are given by

ax1

v ax2  (2.10)

exy 2 ax ax1

and the non-zero stress components are

ax = X(e x+e y)+2jex
y = X(ex+ey)+2 viey

(2.11)

Oz  = X(ex+ey)
Txy = 2vexy"

The equation of motion in terms of displacement becomes

VV2 u+(X+U)V(Vu)+pf = pu (2.12) A.

where

Waves associated with this equation will either be dilatation waves .9

(P-waves) or vertically polarized shear waves (SV-waves).

Plane Stress

For bodies that are very thin in one direction and loaded in a plane .-.

perpendicular to this direction we can again make certain approximations

that will simplify the basic equation of motion. This case is refered to .9..-

as plane stress and the stress components are taken to be

low,
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= ax(xl'X2't)

0Oy = 3y(X1 ,x2,t)

Txy = txy(Xi~x 2 ,t) (2.13)

TX = Tyz

The non-zero strain components will then be

ex = (ax +vOy)/E

ey = (ay+vax)/E

e = (ax+ay )/E (2.14)

ey "Y Txy/2u,

while the equation of motion in terms of displacement reduces to

E 2- (V.u)+pf = pu (2.15)

where E and v are elastic constants.

Anti-Plane Strain

Bodies that are very long in one direction and loaded parallel to

* that direction can again be modeled by making certain approximations that

will simplify the basic three dimensional equations of motion. This case

-i is normally referred to as anti-plane strain and the displacements are of

the form

u=0

v= 0 (2.16)

w =w(xl ,x2 ,t). _

This case corresponds to out-of-plane motions.

p .-



The non-zero strain components follow from (2.1) to be

e __w

yz (2.17)

eexz -ax1  ..:

and the non-zero stress components, from Hook's law, are S

azx = 2e zx (2.18)

a zy = 2pe zy

For this case the equation of motion in terms of displacement reduces

to

2 w+pf =p (2.19)

Waves associated with this anti-plane case will be horizontally polarized

shear waves (SH-waves).

2.5 Ray Theory

*. The purpose of this section is to review how plane P-,SV-, and

SH-waves reflect from stress free plane surfaces. The geometrical nature

of these incident and reflecting waves is sometimes called ray theory. _

For plane strain, the free surface will produce a coupling (mode

[. conversion) between the SV-wave and the P-wave i.e., the incident P-wave

or SV-wave will produce both reflected P-waves and SV-waves.

All cases are related through Figure 2.1 which illustrates tIe basic

ray patterns. The incident wave (either P or S) has an incident angle oo ,

measured from the surface normal. The reflected P-wave has angle ,e1,

while the reflected S-wave has angle 02.

S,
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0

Reflected P-Wave

, 0 Reflected /i

Incident Wave
P or S

Fig. 1 Ray Theory

For the anti-plane strain case, there will be no mode conversion and

hence only a single reflected SH-wave will be present with the incident

and reflected angles being equal, i.e.

e2 =eo (2.20)

For plane strain we have two possible types of incident waves the

P-wave and the SV-wave. In both cases there is in general a mode

conversion where either the P-wave or SV-wave will upon reflection become

part P-wave and part SV-wave; see Figure 2.1.

For an incident P-wave, ..

-:(2.21)

c2sino =c lsin82 , (2.22)

2-s
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while for an incident SV-wave

-02 = 8o (2.23)

2 0

c2sine l = clsino°  (2.24)

Note equation (2.23) is real-valued only if eosin-l(c 2/cl) otherwise there

is a mode conversion of the SV-wave to a surface wave.

The previous equations provide information necessary to compute

directly the angles and ray path distances of reflected and incident

plane waves, except in the case of the reflected SV-wave from an incident

P-wave and the reflected P-wave from an incident SV-wave. To find the

ray path distances for these two exceptions we must turn to numerical

techniques.

Figure 2.2 illustrates a typical source/receiver pair in plane

* strain, where the source is at (O,h) and the receiver is at (xy).

Consider a ray path SPR as shown, depicting an incident P-wave traveling

a distance c, and a reflected SV-wave traveling a distance d. With x -

a+b, these ray paths c and d can be found from two simultaneous nonlinear

equations

2 Kxd 2 2 (2.25)

I_ Y2.[Kxd 1 2 d 2 '

c+Kd

; where, K = c2/cI. These equations can be solved by employing the

Newton method see Rice [45], Ketter and Sherwood [26] and Berezin and

Zldkov [7].
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I.

a-4b

22

Fig. 2.2 Geometry of Incident P-Wave
and Reflected SV-Wave

Figure 2.3 illustrates another typical source/receiver pair in plane .

strain, where the SV-source is at (O,h) and the receiver is at (xy). p

Consider now a ray path SPR as shown, where an Incident SV-wave travels a

distance c, and a reflected P-wave travels a distance d. With x = a+b,

these ray paths can be found from two simultaneous equations

h2+[x" xd 12 2
hL Kc+d

(2.26)
2.[ xd 2 2

Y LKc+ a] d

These equations can again be solved by employing the Newton method.

Figure 2.4 illustrates the case of waves with equal angles of p

incidence and reflection. This occurs for the SH, P-P and SV-SV cases.

Again the source is at (O,h) and the receiver is at (x,y), and c and d

are the ray paths of incidence and reflection. For this case
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1 d

X2 Rj

h Reflected P-Wave

I Ic 0

I Incident SV-waveR

I.

Fig. 2.3 Geometry of Incident SV-Wave
and Reflected P-Wave

i S •

2X112c = hil + hy

d = y[1 + (+) 1/2 (2.27)

2.6 Integral Representations

For the general elastodynamic problem, we may obtain an integral

equation from the dynamic reciprocal theorem which is the direct

extension of Betti's reciprocal theorem in elastostatics. The theorem

states that two unrelated elastodynamic states consisting of body forces,

surface tractions and displacements, initial conditions and velocities,
such as if i9ti ui uv i} and{fi,ti,ui,ui,v'} which exist on the same body S
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ti2. eomtyonnidn HWv

and Reflected SH-Wave

bounded by a surface as for t> 0, are related by

I* Ut ui)(xt))dS + fpt(f u)(xt)+v',(x)u(xt)
as S

at a (2.28)

~~~L ;iE (Xu)(xt)

+ 1lc~ *j(t +vx)uj(x,t)+uj'(x) - ]dv

where *means the convolution integral defined by

I tf(x,t~tgxTd t > 0
(fg0xt (2.29)

If we choose one of the elastodynaniic states sa ,i9i u u v to

be that of the physical prohlem and let the other state :f .,t.,9u.,gu.vi: beA
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that generated by a unit concentrated body force in the same body, we

obtain the integral expression S

cu(.Et) {G (.rt )-u(.t) -n}dS(lt)dt, (2.30)

where we have neglected the body force ft and taken zero initial

conditions. The coefficient c is given by

1/2, r e smooth boundary as

C 1, r e interior of aS (2.31)

0, r E exterior of aS A

_G1G(rt;ro,t o ) is the displacement Green's function, K is the stress

field associated with G, _ and u are the surface tractions and

* displacements on the boundary aS , O and t are the space and time

positions of the source (associated with the Green's function), r and t

are the space and time positions of the receiver, and n is the unit

normal vector to the surface. Subscripts "o" refer to source

quantities. Details on the Green's functions will be provided later in

the report. 0

For the anti-plane strain case, the integral relation may be written

as

cw(r,t) = {GT(r°,t°)-w(r°,t°)K'ndS(r°)dt°, (2.32)

where we now have a scalar equation.

-p
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III THE BOUNDARY ELEMENT METHOD

3.1 Principal Advantages

Recently a new numerical method has been developed called the

Boundary Integral Equation Method. The basic method when combined with

finite element discretization concepts is commonly refered to as the .

Boundary Element Method. The method is applicable to a wide variety of

field problems in engineering science and has some advantages over the

finite element and finite difference methods in several situations. -*

The principal advantages of the BEM method lie primarily in the

reduction of the number of spatial dimensions of the problem by one, and

by formulating the problem directly in terms of the boundary values.

Since discretization is carried out only on the boundary of the body

under study, the number of unknowns in the numerical problem is reduced,

and the need of creating space-filling, three-dimensional grids is

eliminated. For many cases, problems involving infinite domains can be

handled in a very direct and simple manner using appropriate Green's

functions. For infinite or semi-infinite problems there will be -

considerably fewer elements and thus a smaller system of equations need

be solved.

Another advantage over domain methods has to do with the solution

variables inside the body. These variables in domain methods will often

show unrealistic jumps in values between nodal points and will not vary

continuously. In the BEM method these variables will vary continuously

in the body as the only approximations of geometry occur on the

boundary. In many engineering problems the important part of the

solution will be on the boundary or at a few selective points in the A t-

interior. With domain methods the solution is found at all nodal values,

while in the BEM method the solution is found for boundary nodes and only
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those interior points selected by the user. As in the finite difference

and finite element methods, the problem is reduced to a system of 0

simultaneous equations to be solved. While in the domain methods the

system coefficient matrix is usually banded, using the BEM this matrix

can be fully populated. 0

3.2 Method Development

The development of the BEM method for a general problem is described 0

in the flow chart in Figure 3.1. The method is started with the use of

Fundamental Potential Methods
or

Solution Weighted Residuals "

Boundary Integral Finite Element

Equat on Discretization

- J ~Boundary Element 
.-.

System of Equation 
.

Fig. 3.1 Flow Chart of Boundary Element Method

potential theory or weighted residual methods which when combined with a

Green's function, form the boundary integral equation. The use of an

' efficient Green's funciton is central to the method. There are multiple

choices for a Green's function, all of which will satisfy the governing _

equation for the problem, but will vary according to the boundary

conditions on the body. Again refering to Figure 3.1, the boundary
L~ 

' 
%--9
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integral equation is then discretized using established finite element

techniques to form a system of simultaneous linear algebraic equations. 0

The solution to these equations will yield the unknown boundary values of

the problem. These boundary values can in turn be used to find the

solution at any interior points. 9

The basis for an integral equation formulation in elastodynamics was

first developed by Kupradze [29), de Hoop [19) and Wheeler and Sternberg

[52), while Eringen and Suhubi [20) provide a concise review of this B

classical work. The integral equation formulation is the dynamic

extension of Betti's reciprocal theorem which relates two different

dynamic states for a given elastic body, see equation (2.28). An

apparent choice for one of the two elastodynamic states is the desired

solution to the problem, while the other state is normally chosen to be

an appropriate Green's function that satisfies the governing equations of

motion for the problem under study. Using these choices, the dynamic

equivalent to Somigliana's identity can be derived, e.g. equation (2.30),

and through a limiting process a boundary integral equation is developed p

which forms the basis of the BEM method. This process was outlined in

section 2.6, and developes what is called a direct BEM approach, see

Mendelson [35).

3.3 Half-Space Green's Function for Geomechanics Problems

If one were to model a typical geomechanics problem of a buried hole

using a finite element technique, a typical mesh might look like Figure

3.2. As can be seen in this figure there are problems in determining how

far out to run the mesh and what boundary conditions to use on the outer _

elements. The BEM method will eliminate the need for a space filling

, -



-20-

Fig. 3.2 Finite Element Interior Discretization
for a Buried Hole

mesh as can be seen in Figure 3.3a where this discretization is a result

of using the BEM with an infinite space Green's function. Again however,

problems appear as to how far out to run the boundary mesh and what

a. Infinite Space Green's Function b. Half-Space Green's Function

Fig. 3.3 BEM Discretization for Buried Hole •

-* boundary conditions to use on the outer elements. These problems can be

eliminated with the use of a half-space Green's function as shown in . ..

Figure 3.3b, where now there is no need to discretize the free surface

since that boundary condition is automatically satisfied by the

half-space Green's function. This example brings out the importance of

the choice of the Green's function, and illustrates the usefulness of a

,-..-
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half-space form for geomechanics problems. The employment of such a

half-space Green's function was a major part of this research program. 0

TV GREEN'S FUNCTIONS

4.1 Introduction

The Green's function is the singular solution of a differential

equation subjected to an impulsive source. In the case of elastodynamics

the governing equation is Navier's equation of motion (2.4), and the

source is taken as a concentrated impulsive body force loading. The

Green's function may be developed for regions of infinite extent or for

regions of finite size with particular boundary conditions. As

demonstrated in section 3.3, the development of a Green's function for a

semi-infinite domain is most desired for geomechanics applications.

Elastodynamic problems for half-spaces subject to impulsive buried

point loads or other sources have been studied for quite some time, see

e.g. Lamb [30), Hudson [24), Eringen and Suhubi [20), Payton [41), and

* Garvin [22). These types of problems are directly related to fundamental

*singular solutions (i.e. Green's functions) for the half-space geometry.

For the anti-plane strain case, such solutions can be found in Cole _ _

* et.al. [15), Achenbach [2), Rice and Sadd [44), and Hudson [24].

- Singular force solutions for the plane strain case are complex and are

obtained by integral transform methods with the inversion being S

accomplished by employing some version of the Cagniard [13) technique.

Because of mathematical difficulties, most of these solutions are

formally carried out only for surface points or other special points in •_

the medium.

IL •
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With a fundamental Green's function for a half-space geometry, the

BIE method can be used quite effectively to handle many dynamic 0

geomechanics problems, see for example Rice and Sadd [43,44]. However in

order to use a fundamental solution in this way, it must be computable at

all points in the region. Hence the development of easily computable 0

Green's functions is very important in constructing efficient numerical

BEM codes for wave propagation.

We present here the development of an elastodynamic Green's function

for a two-dimensional, isotropic half-space. For anti-plane strain, we

consider the buried singular impulsive line load and construct a

half-space Green's function from the infinite space Green's function by

the method of images. For plane strain, we address the buried singular

impulsive line load as formulated by Hudson [24]. Starting with the

formal solution, a numerical root finding scheme is employed to compute

terms which normally present problems for points below the free surface.

4.2 Anti-Plane Strain Green's Function

Rewriting the anti-plane strain equation of motion equation (2.19)

UV2 w+pf = p, (4.1)

if we let pf be a concentrated impulsive out of plane line load at

ro and to, w will now become the anti-plane strain Green's function

G. For this case equation (4.1) becomes

IV 2G-pG = -S(t-t )W(r-ro). (4.2
0 --

For the infinite space domain, G is given by
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l~ ~ H(t-to0-R/c 2) (4.3)

[(t-t0 ) 2 R2/c22JI 2

where R 1 1- rand H is the Heaviside function.

The stress field associated with this Green's function is computed 0

through Hooke's law and is given by

R H(t'to' R/c2) aR(.):
R 0 c2) __K(r,t;ro,t) = R Ht--R

-- 21Tc 22 [(t-to)
2 R2/c22 3/2 an (

For the anti-plane strain half-space problem, the method of images

can be used to construct a half-space Green's function from the infinite .

space Green's function through the superposition of a virtual infinite

space function of equal amplitude with an image source point relative to

the free surface as shown in Figure 4.1. The associated stress field can A

IMAGE SOURCE NODE

(XI ,.12)

a.-

0r

RECEIVER NODE

(xj,x2) . .

SOURCE NODE

Fig. 4.1 Geometry of Source and Image for the Construction
of a Half-Space Green's Function
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be derived as in (4.4). The results are

G 1 H(t-t oR /C2) H(tto-R /C
Go+Gl  2 [it-to)2 R 2/C 2/2 + C(tt) 2 R 2  2 1/2}  IK__o+I=  -Z{I Ro (ttoC) _ R o + [(t'to'R,/C I i•0 0 c2/0 2

2 c2 0(-t)2R20222 + 1i~t) 012/c221]3/2 - -1(4.6)...
K=K 1 RH~t-t -I __ 2 -}(4 6

where the position vectors R and R, are defined in Figure 4.1. This

simple superposition produces a stress free surface at x2 = 0 as

required. The advantage of using the half-space form in the BEM method

is that the boundary of the free surface will not have to be discretized,

thus simplifying the problem.

4.3 Plane Strain Green's Function

The plane strain equations of motion (2.12) in indicial notation are

IJUkii + (X+U)ui ik + f = P k (4.7)

If we let A be a concentrated in-plane line load located at x= 0,

X2=h and ui=Gijej where ej is a unit vector in the xl ,x2

plane, then Gij is interpreted as the two-dimensional Green's

function. This Green's function Gi evaluates the displacement field

U, due to a concentrated unit force in the ej direction. Equation

(4.7) then becomes

pGijkk + (X+p)Gkjik - = 6(t)6(xl)6(x 2-h)6 ij (4.8)
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Introducing displacement potentials and using Fourier transformation

methods with the Cagniard [13] inversion technique, Hudson [24) develops 0

a solution to (4.8) for a stress free surface with zero initial

conditions. The reflected portion of the wave field is found to be

A

PPGR  1 l Htr,/)U j + itt ,SP PS.-.-
G -[H(t-r"/c )U. + H(t-t sp)Uij + H(t-t )Uj-ii 2TrP1SP i PS 1 j

(4.9)

+ H(t-r"/c2)Uj + H(t-tsPs)H(r"/c2-t)U S], ;-

where t is the actual time, r" is the distance between the image source

and receiver, and r' is the distance between the source and receiver.

- pp.

PP
" Uij is the displacement tensor for an incident P-wave producing a

reflected P-wave,

s n -isa.
u .= Re{ L S~} .ds (4.10)

U5 Re{ j d~(.1

SPS L U

Uij is the displacement tensor for an incident P-wave producing a

reflected S-wave,

*sn nanoUPS. Re { d~j s i.AL

2S isn .-
!"SS 01i;:

U*j is the displacement tensor for an incident S-wave producing a

-reflected S-wave,

::SS Re{ S") -
:.:Uij -~s Re{t (4.12) ::

i s s 2/no.__

SP
.. Uij is the displacement tensor for an incident S-wave yielding a.-
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reflected P-wave,

=s ds "s"

P Re : R(}s d (4.13)Uij -n nB isn "'"

SPS
Utj is the displacement tensor for a incident S-wave, yielding a

surface P-wave, and a reflected S-wave,

Si'S -is ~ )
Uij Re{ L R (4.14) P

is s2/n

where

2 2 1/2Ti = (s2-l/cI  --

not (s-
= (s2_i/c 2

2)1/2 (4.15)

Q(s) = 4is(2s).

R(s) = (2s2-/c 22) 
2 4s2nn

S(s) = 4is(2s2-1/c22) I._,

From the Cagniard method, there is a functional relationship between s

and t for each contribution, i.e.

For the PP term: t - sx1 + inC(h+x 2 ) (4.16)

For the PS term: t - sxI + i(nix 2+nah) (4.17)

For the SS term: t = sxI + in (h+x2) (4.18)

For the SP term: t $ sx1 + i(nx 2+nh) (4.19)

Equation (4.9) corresponds to Hudson's equations (7.66) and (7.67) where

we have used a more compact notation. The five reflection terms in (4.9) S-

correspond to the five standard reflected wave types as shown in Figure

'*-, 4.2.
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--S .. _. . .

Fig. 4.2 The Ray Paths from Source to Receiver

k
As is common in problems of this type, some of the terms in relation L:.

(4.9) cannot be evaluated in closed form for a general field point below " -
SP PS

the boundary surface. For this case, the terms Ujj and Uij are the e. .....
ones which posses this problem. Through a Cagniard transformation, the ::-:

quantity s must be determined by inverting the relations in equations :

(4.16)-(4.19). Equations (4.17) and (4.19) unfortunately do not lend _

*themselves to simple inversions, and consequently a Newton root finding ,

method for analytic functions was employed, see Rice [45J for details. '

specifed vaues o
s 0 PS

* s such that these equations will be satisfied. The derivative terms in

*equations (4.11) and (4.13) are computed by first employing implicit

differentiation of relations (4.17) and (4.19) and then using the root
SPSfindings values. This then allows direct computation of the Uermand i.relat.o

t terms. .a

FoThe stress field associated with this Green's function is computed 0

SPS

finding ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : vales Thste"alw iec optaino heUin

• PS
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through Hooke's law to be

K is )]Gk~ (4.20)
Kijk =[Xij'rs'iJ(6ir~js+6is jr)]rk,s(.01:::-ii

4.4 Results for the Plane Strain Case

Specific results for the plane strain case were investigated for five

points within the half-space as shown in Figures 4.3-4.6. The coordinate

points are (0,5), (3,5), (5,5), (5,3), (5,0) all in cm. The Figures plot

the non-dimensional Green's function 2c2GijTrpR versus dimensionless

time c2 t/R, where R is the distance from the source to the receiver. .

The material properties chosen for use correspond to c1 = 5800 m/s,

c2  3350 m/s and p - 2.5x103 kg/m3 , and h - 10cm.

For the point (0,5) in Figures 4.3 and 4.4 the solid line is to be

compared with the dots which represent the analytical solution by Payton

[41). Also for the point (5,0) in Figures 4.5 and 4.6, the solid line is

compared with the dots which are the analytical solution results by

Eringen and Suhubi [20]. As can be seen our results compare quite well

to these analytical solutions for the special points considered.

The surface results at (5,0) as shown in Figures 4.5 and 4.6 ...

initially presented a problem by not decaying properly after all the wave

fronts had passed. This problem did not occur for the subsurface output

I in Figures 4.3 and 4.4. This decay problem was a result of a numerical

instability that occurred when the individual reflection components were

very large compared to the total sum. Each total displacement component

should undergo monotonic decay with increasing time after all the wave

fronts have gone by.

-
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In order to resolve this instability problem a smooting operation was

employed. After all the wave fronts have arrived, if instability (i.e. 1

growth) was detected, the response was forced to decay at the same rate

as an infinite space source problem with a similar receiver and time.

The slope of this smoothing operation was made compatible by a linear

interpolation of data points about the connecting data point. The

infinite space solution was found in Eringen and Suhubi [20]. As can be

S seen in Figures 4.5 and 4.6 this procedure worked well and is only

necessary at or near the free surface.
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V ANTI-PLANE STRAIN WAVE MOTION

5.1 Introduction 0

This section is specifically concerned with developing a BEM

technique for anti-plane strain using a time-dependent approach similar

to that of Cole, et.al. [15). The Green's function for the half-space

geometry will be selected for use and this choice will eliminate the need

to discretize the free surface of the half-space itself, thus reducing

still further the number of required unknown variables. Attention will l

be directed to SH-waves propagating in a half-space with cavities or

inclusions. The wave forms, cavity shape, size and number are all

arbitrary.

5.2 Problem Formulation

The direct boundary integral equation method will be used to 1A

determine the solution of the anti-plane strain case for transient

elastodynamic waves in an isotropic, homogeneous half-space. Recall that

anti-plane strain is characterized by a displacement field of the form u

{O,O,w(xlx 2 )1 . The non-zero component w satisfies the classical

wave equation from (2.19), i.e.

C 2
W ii = 1 51

where c2 is the shear wave velocity, and the body forces are neglected.

From equation (2.32) the integral representation for anti-plane

strain was given by

cw(r,t) = [Gr ro0t (5.2)

o as
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Equation (4.5) provides the proper Green's function, i.e.

1 H(t-t0-Ro/c 2) H(t-t0-R1/c2)ii G = -I-{ + "i21l2} (5.3)
G-21nTp [(tt 2  2 2 1/2 2 2/c21/2~'-.~~ ~ _R tt).o/C2 I /  [(t-to)2-Rl

0  c2  t0  1 2

and the associated stress field is given by (4.6) to be 3

l RoH(t-to-Ro/c 2 ) Ro R1H(t-toR/2 R--- 1 0-02- - +  11-12 5.4)
27rc 2  [(t-t0 ) R2 /C2M 1/ 2 an [(t-t0 )2-R12/c22j3/2 n

Results (5.3) and (5.4) can now be used with equation (5.2) to

construct a boundary integral equation to discretize and solve for the

L displacements and tractions on the boundaries. With the boundary data 3

determined, equation (5.2) can be reapplied to find the displacements and

- stresses at any interior points. To solve for the stress at interior

points, relation (5.2) is substituted into (2.18) yielding

1 31 =  J [ GT(ro,to)-w(ro,to)K.n]dS(ro)dt} .5.5)

3i = "- 1-0]'
0 a

5.3 Numerical Discretization

The integral equation (5.2) must now be discretized in some manner in

order to model a physical problem. For this case, the boundary to be

integrated over was divided into elements with a node at the center of

each. Each individual element is assumed to possess a constant S

displacement and a constant traction with respect to space. Integration

over time was constant for the displacement kernel and linear for the

stress kernel. Integration over a particular time step and space S -

increment requires special attention. Rice [45) gives a description of

the integration of the kernels with special emphasis on the
kS
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singularities. This was essentially the same scheme used by Cole [14).

It should be pointed out that it is possible to interpolate the variation 0

of the dynamic variables over an element with any order of shape function

(e.g. constant, linear, quadratic, etc.).

For a receiver point on the boundary, equation (5.2) thus becomes 0

I~ K~n Cj(r,t)w' drodto .."i .'

2' n=l j1l tn r. - (5.6) :-
m H= - I / G n (ro,t)' d dt

2~ ltr w -1 o j 0 0
n=1 j-1 tn ri b

where H is the total number of elements, and M is the total number of

time increments. The receiver time is incremented by m, i.e. tm = mAt,

m - 1,2,...M, while the source time is incremented by n, tn = nA t, n -

1,2,...M. The source boundary has H elements, and there are H receiver

elements. Note that since a source time tn cannot be greater than the

receiver time, n is summed only up to m. n and *n are the 0

interpolation functions for displacement and traction respectively.

Defining the discrete kernels or influence coefficients

IG7 f f Gdr dt
ij r 00tn r - "

(t -tm)
IKi = f El o ]K-ndrodto,

tnrj

equation (5.6) can be written as

m H m H mn n (5)"
1 + I+= E E IGj (5.7)wi n=l j-1 n=l j=l

Equation (5.7) will yield a set of H linear algebraic equations to be

solved at each time step. The final result of this will be the tractions 9___

and displacements of all the boundary elements at all the time steps.
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Although there are 2H2M2 possible kernels, not all need to be

calculated as the Green's function has the time translation property, 0

% G(r,t;ro,to) = G(r,t+At;ro ,to+At) (5.8)

and the causality property

G(r,t;ro,to ) : 0 for c2 (t-to)<jr-ro1 (5.9)

These properties greatly reduce the number of non-zero kernels in a

given computational problem. Furthermore it is interesting to note that

this discretization scheme can be implicit or explicit depending on the

time spacing and the size of the elements. If c 2 At <Ah/2, where h is

the smallest element length, the coefficient matrix of the linear

* algebraic system to be solved will be diagonal and the discretization

scheme will be explicit. If c2 At> Ah/2, the matrix will no longer be

diagonal and the discretization scheme will be implicit. The integral

equation is exact so any errors are a result of numerical integration.

The surface of the body is discretized into small line segments and as

one would expect the smaller the line segments the more accurate the

surface representation andthe more accurate a solution. Integration of

" the Green's function in time has dominant errors near the singularities.

These singularities occur when the direct wave or reflected wave just

" reaches the receiver point, as can be seen in the equation for the

"" Green's function (5.3). As discussed in Cole [14), smaller time steps in

-* general will give better accuracy. The problem with using smaller time 0_

* steps is that one will need a larger number of time increments to get a

-- suitable displacement output and there is a buildup of roundoff error

" " " " - " .. .. . . . . . . .. . . : . . . . . • . . . . ' . . . . . . . I I
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with each new time step.

In the case of an interior point, the displacement and stress can be

solved for directly, once the boundary data is known, using the equations

m H m H
nm I' mn n Gmnp n--l J=l Pi wj +n=1 J=l I Pi j

(5.10)

SE HIKmn + [ Z .IG mn nI: Tp(L) = [- nZ; n=1 pj. wj3],L
n=l j=1 nal j=l I p  ,L

where, p is related to the interior point and L is the normal direction

to the surface the stress is on. P

5.4 Results

An example problem which will employ the solution method is shown in

Figure 5.1, and contains a wave source and a stress free circular cavity

embedded in an isotropic, homogeneous half-space. The geometry of the

source was a four-sided square with an element on each side and the p -

cavity was discretized into twelve elements. The distance between the

source and cavity was held constant ( = 0.1 m) while the depth of the

source and cavity was varied (h - 0.05, 0.075, 0.1 m). The size of the

source was 0.001 m wide and the cavity was 0.01 m in diameter. The

mateial properties used corresponded to a shear wave speed of 3,200 m/s

and a shear modules of 8.1 x 1010 N/m2 . The time increment was At=

2.5 x 10-6 s. Each configuration was run with the same input condition

of a step displacement pulse of wo= 0.01 m over the whole source

boundary with a duration of one time increment.

p 9
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(0,0)

(-/2,hi 2)
h • (O.h12)

(-/2,h)
* d

(SOURCE)

X2 :

Fig. 5.1 Schematic of Buried Hole Problem

The resulting displacements from the above example were computed at

four field received points (shown In Figure 5.1). Figure 5.2 illustrates -

the displacement-time response of the receiver point on the surface of

the half-space at the coordinates (0,0). There is a distinct peak as the

wave reaches this point. The closer the source to the receiver the S

greater the magnitude of the peak.

In Figure 5.3 the receiver point is half way between the cavity and

the free surface at coordinates (O,h/2). In addition to the peaks from S .

the direct wave there are now peaks from the reflection from the free

surface, reflection from the cavity and reflection from the free surface

via the cavity. Note, at h/z - 0.5 the events of the reflection from the A-

free surface and reflection from the cavity should occur at approximately

the same time according to ray theory. In general the longer the ray

path the smaller the peak magnitude of the event. This, however, may not P..

be the case near the free surface of the cavity or near the surface of
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the half-space. Figure 5.4 corresponds to the receiver point at

coordintes (-z/2,h/2) and again illustrates several wave arrivals. 0

In Figure 5.5 the receiver point is located between the source and

the cavity at coordinates (-z/2,h). The direct waves for the various h/2

cases all occur at the same time with essentially identical magnitudes. 0

For the h/.- 1 0 and 0.75 cases, the reflections from the cavity both

occur at the same time with approximatey the same magnitude. Reflections

from the cavity for the h/ - 0.5 case are associated with a larger

displacement magnitude because of the presence of the free surface

reflected wave.

These computer runs were made on a Prime 750 minicomputer, and a -

typical run used a total of 16 elements with 4 output points and 40 time

steps. This resulted in a total run time of 6.5 cpu(s).

S

-9- .

• " 1
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VI PLANE STRAIN WAVE MOTION

6.1 Introduction

This section is concerned with developing a BEM technique for plane

strain elastodynamics using a time-dependent Green's function. As with

the previous SH-wave case, the Green's function for the half-space S

geometry will be selected for use. This choice will again eliminate the

need to discretize the free surface of the half-space itself, thus

a reducing the number of required unknown variables. Interest will be D

directed to SV-waves and P-waves propagating in a half-space with

cavities or inclusions. The wave forms, cavity shape, size and number

are all arbitray.

6.2 Problem Formulation

The direct boundary integral equation method will be used to 0-

determine the solution of the plane strain case for transient

elastodynamic waves in an isotropic, homogeneous half-space. Plane

m strain is characterized by a displacement field of the form u =

. {u(x l x2 ) , v(x l x2 ),O1 . The equation of motion from (2.12)

with zero body forces is given by

U V2u + (+1)V(V.u) = _ , (6.1)

From equation (2.30) the integral representation for plane strain is

cu(ro,to ) = [Gt(r,t).u(r,t)KnldS(r)dt . (6.2)

o as
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The Green's function for the plane strain half-space domain was

developed in section 4.3, and is given by

G l [H(t-r"/c )UPP +H(t-t SP + PS
ij 21tp I i tt) + H(t-tps)Uij

. ,,.r/c )uSS+ ,, SP P0o
+ H~t-r"/c )C2 + H(t-ts s)H(r"/c2 -t)Uij +H(t-r'/cl)Uj

(6.3)
+ H(t-r'/c 2 )Ui])

P uS

where Uij, ii corresponds to the incident field, and is given by Hudson

[24). The stress field associated with this Green's function is from A

(4.20)

Kijk= [ij 'rs + I(dir 6is + 6is 6jr)]Grk,s (6.4)

Results (6.3) and (6.4) can now be used with equation (6.2) to

construct a boundary integral equation to solve for the displacements and

tractions on the boundaries. With the boundary data determined, equation

(6.2) can be reapplied to find the displacements at any interior points.

6.3 Numerical Discretization

The integral equation (6.2) must now be discretized in order to model

a physical problem. Similar to the SH-wave case, the boundary to be

integrated over was divided into elements with a node at the center of

each. Each individual element is assumed to possess a constant

displacement and a constant traction with respect to space and time. 3

This differs slightly from the anti-plane strain case where the

displacement was constant in space and linear in time. Because the
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half-space Green's function is a system of waves (direct, reflective, and

surface) it possesses multiple singularities in its values for a typical 0

source/receiver pair at different times. Integration over a particular

time increment in which a singularity appears, requires special

attention. A Gauss four point quadrature was employed to integrate both

in space and time. This allows one to sample points over the integral

other than the endpoints which may be singular. Rice [45] gives a

description of the integration of the kernals with special emphasis on S

the singularities.

For a receiver point on the boundary, equation (6.2) becomes

1 m H
I£ I + K . (r,t)w drdt
n=l j1 (6.5)

m H
= £ I I Gij (r,t)-r drdt,

n1l j=l tn r. .-

where H, M, m, n, n and *n are the same as previously defined in

section 5.3

Defining the discrete kernels or influence coefficients
I mn

IGij = f G drodt 0
t r.- 0

IKmn  = f K drdt
13 ~ 0 0

n m
equation (6.5) can be written as

m H mn n m H mn n. IK u. I G. I Gt (6.6)
n=l j=l 13 n=l j= 13 "

• i . . .. - 2 _ . - -. . _..
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Equation (6.6) will yield a set of H linear algebraic equations to be

solved at each time step. The final result of this will be the tractions

and displacements of all the boundary elements at all the time steps.

Note, this closely resembles the scheme used for anti-plane strain; the

difference being that G and K are now second order and third order

tensors, respectively. Also, the integration is now over the receiver

points. In the anti-plane strain case the integration was over the

source points.

Although there are 8H2M2 possible kernels, not all need to be

calculated as the Green's function has the time translation property,

(5.8) and the causality property (5.9). These properties greatly reduce

the number of non-zero kernels in a given computational problem.

Furthermore it is again interesting to note that this discretization

scheme can be Implicit or explicit depending on the time spacing and the

size of the elements. If c, At < h/2, where h is the smallest element

length, the discretization scheme will be explicit. If ClAt> bh/2, the

discretization scheme will be implicit. This method works better for an

implicit scheme where At C2 is approximately equal to the diameter of

the largest cavity. When At c2 is less than the diameter of the

largest cavity, the solution blows up or gets larger with increasing

time. There appears to be a need for each element to receive influence -

from each of the other elements on a continuous surface.

In the case of an interior point, the displacement can be solved for

directly, once the boundary data is known, i.e.

m H m H
m m H zI m  n : H mn nl (6.7)
U Z Z I Kp w. E= IG

Up n=l j=l PJn=1 j l I  p j  " j ' rQ

p"

-I
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S

where, p is related to the interior point.

S

6.4 Results

In section 4.4, a check of the plane strain half-space Green's

function was made by comparing the result with the Payton [41) and

Eringen [20) solutions. As a che-k of the total BEM scheme, a comparison

was made between Garvin's analytical solution [22) and a BEN computer

model. Garvin's work provides an exact solution for the surface response

due to a buried dilatational line source of impulsive time dependence.

In trying to compare these two solutions it should be pointed out

that there are basic unreasolvable differences between the Garvin
IL-

solution and the BEN computer model. Garvin's solution is due to a

buried line source excitation as represented in Figure 6.1. The radial

3P-

Fig. 6.1 Garvin Problem Configuration

t-

----.
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displacement of the source is given by Garvin to be

I

at H(t-r/c I ) (6.8)

r  2r[t 2-(r 2/c 2
2)] 1 /2

where 'a' is a constant representing the source strength and r is the

distance between the source and receiver point. This is taken to be an

approximate representation of a pulse emitted by an explosion, and

represents a sudden singular jump followed by a gradual incomplete

recover, see Figure 6.2. ..

&/2r f

•tc 1 /r

Fig. 6.2 Garvin Source Displacement Function

In contrast the BEM model incorporates a buried cavity of finite size

as a source as shown in Figure 6.3. This buried source was modeled as an

eight-sided cavity with a diameter of 0.005 mn located at a depth of 0.1 nI

;m:" ""
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Fig. 6.3 BEM Source Configuration

in the half-space. On this buried cavity a radial traction boundary

condition was used to represent the source excitation in Garvin's

solution. The form of this traction function was

-4

tr = t + 600] Dynes, (6.9)

and is plotted in Figure 6.4. Note, the function is not smooth as it is

discretized to be constant over each time increment.

Therefore in order to alleviate the differences between the actual

Garvin problem and the BEM model:

1. The cavity was made small with respect to its depth.

o
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2. The Garvin solution was scaled by adjusting the source strength

parameter 'a', to match the computer solution at a point below

the surface near the cavity. A comparison was then made at

various other points along the free surface.

tr( DYNES)

1000

500

0.

Fig. 6.4 BEM Boundary Traction Profile

Figure 6.5 shows the vertical displacement solution below the free

*surface at (0,7.5) cm. The value of 'a' in Garvin's solution was

adjusted to be 1.3 x 1010CM2  to match the BEM solution. The

material properties correspond to a P-wave speed of 5800 m/s, an S-wave

speed of 3350 mis, and a density of 2500 kg/in3 Figure 6.5 shows both

* Garvin's source solution and the BEM solution with this value of 'a' for

IL comparison. As shown in Figure 6.6, on the free surface, there is very

*good comparison directly above the buried source at (0,0). Reasonably

* good comparisons also exist at points farther away from the source as
I L illustrated in Figures 6.7-6.10.

- :a
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Displacement at (O,7.5)cm.
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Another example problem which will employ the solution method is

shown in Figure 6.11. The problem (similar to the SH-wave example)

contains a wave source and a stress free circular cavity embedded in an

isotropic, homogeneous half-space. The geometry of the source was a four

sided square and the cavity was modeled as a twelve sided hole. The

distance between the source and cavity was 0.1 m and the depth of the

source and cavity was 0.1 m. The size of the source was 0.001 m wide and

the cavity was 0.01 m in diameter. The material properties used -

corresponded to a P-wave speed of 5940 m/s and a S-wave speed of 3,200

m/s and a density of 7800 kg/m. The time increment was At=3.2 x

1O6s. This configuration was run with the input condition of a step

normal displacement pulse of Ao= 0.001 m over the whole source boundary

with a duration of one time increment.

(0,0)

-. 05, .05)m
A (0 .05) M

(-.05,.1)m

K2

Fig. 6.11 Schematic of Buried Hole Problem

i .. ," '",
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The resulting displacements from this example were computed at four

field receiver points as shown in Figure 6.11. Figures 6.12-6.15 plot P

dimensionless displacement vs. dimensionless time. The dimensionless

displacements u/A and v/Ao are the horizontal and vertical displacements
0..

repsectively, normalized by the initial step displacement magnitude. The S

dimensionless time t/ At is the actual time divided by the time

increment. The notation in these four figures represent the events that

occur as particular waves pass the receiver point. These waves are

classified as

Direct Waves

- P: (Dilatation Wave) I.

- S: (Shear Wave)

Free Surface Reflected Waves

- PP: (Incident P-wave and reflected P-wave) 1

- PS: (Incident P-wave and reflected S-wave)

- SS: (Incident S-wave and reflected S-wave)

- SP: (Incident S-wave and reflected P-wave) 1.

Surface Wave

- S-SP: (Incident S-wave which travels along the surface as

P-wave)

Cavity Reflected Waves

CR-P: (P-wave reflected from the cavity)

-CR-S: (S-wave reflected from the cavity) a---

Multiple Reflected Waves

-SCR-P: (P-wave reflected from the free surface and then from

the cavity)
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Figure 6.12 illustrates the displacement-time response of the

receiver point on the surface of the half-space at the coordinates

(0,0). There are relatively few events in this Figure since no reflected

waves interact with this point. There are distinct peaks as the wave

reaches this location and the S-wave and surface P-wave act together at
So

the same time. Note, because the ray angle makes equal angles with the

x, and x2  axis, the horizontal and vertical displacements are

approximately the same from the time the P-wave passes until another

event takes place.

In Figure 6.13 the receiver point is half way between the cavity and

the free surface at coordinates (0,5) cm. There are more events as

reflections from the free surface and the buried cavity are observed.

* Note, the horizontal displacements are relatively larger than the

vertical displacements, due to the shallow angle between the source and

receiver point. Figure 6.14 corresponds to the receiver point at

coordinates (-5,5) cm. and again illustrates several wave arrivals.

Again because of geometry, the horizontal and vertical displacements are

approximately equal from the time the P-wave passes until another event

* takes place. In Figure 6.15 the receiver is located between the source

and the cavity at coordinates (-5,10)cm. Note, the vertical displacement

is zero until reflections occur.

• A typical computer run of 16 elements with 4 output points and 30

time steps, results in a run time of approximately 50 cpu(m). * .

• -. w
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6

VII CONCLUSIONS AND RECOMMENDATIONS

.0

This research focused on the feasibility of using a half-space,

time-dependent Green's function as a fundamental solution for the

construction of a direct BEM code to solve half-space wave propagation

problems for in-plane and out-of-plane motions. With this half-space

Green's function, the need to discretize the free surface was eliminat-

ed. The time dependent approach used here allows the causality principle

to reduce the number of required computations and permits an explicit

time stepping scheme to be constructed.

The present state of the method and code has some limitations and

disadvantages. Since all previous time steps are required for the

solution, large amounts of computer storage are necessary to use the
methods developed. Another disadvantage is that while the method is good

for transient problems, application to the steady-state harmonic problem

reveals solution error propagation. This is due to the large number of

time steps required and the need of all information from the previous

time steps. Errors in the method arise from integrating the Green's

function over its singularity. The steady-state harmonic problems have

been successfully solved using BEM with Laplace and Fourier transform

methods.

The example problem containing a buried source and a stress free

circular cavity was modeled for both out-of-plane and in-plane motions. A

For this problem one can see the effect of a much more complicated wave

phenomena for the in-plane (plane strain) case when compared to the

SH-wave case. This is due to the effect of the free surface as it

provides mode coversions of incident P- or SV-waves. Because of these

.. A.N&
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complexities, the time to compute a typical run was considerably longer

for the plane strain problem.

This great increase in computation time over the SH-wave case is due

in part to the complex nature of the Green's function. To solve for its

values for a typical source/receiver pair, a Newton iterative root 0

finding method must be employed (as explained in section 4.3). The root

finding scheme is also used to find the ray path distances as described

in section 2.5. There is also a considerable increase in the number of

components of the Green's function; from two for the anti-plane strain

case to seven for the plane strain problem. In addition the integration

itself is more time consuming for plane strain. In the anti-plane strain

case, integration was carried out using a differencing scheme from Cole

[14]. For plane strain a Gauss four point quadrature was used which

means the Green's function is evaluated 16 times for each space increment

and time step.

In general, the developed methods are more accurate if At c2 is

approximately equal to the largest cavity size. When At c2 is less

than the dimension of the largest cavity the solution suffers convergence

problems with increasing time. It appears that each element should

receive influence from each of the other elements on a continuous

surface. Additional numerical experimentation is needed to more

accurately assess this phenomena.

The results obtained here for these plane strain and anti-plane

* strain problems show that the BEM with a time-dependent, half-space

* Green's function is a viable method for elastodynamic half-space

problems. However additional research is needed in order to develop the

technique into highly efficient numerical codes. The method could be

. . . . . . .. . . . • . . . . * * . . . . .. . ...
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extended to include other interpolation functions (linear, quadratic,

etc.). Although Cole [14), has indicated that lower order functions

* would be best, explicit studies of this point should be made.

: Nonhomogeneous continuum problems (layered media) could be investigated.

Specifically for the anti-plane strain case one could use more image .

S
sources to simulate multiple layers. Anisotropic or nonlinear continuum

could also be investigated, using the general method developed, providing

the half-space Green's function could be found. The computability of the

Green's function is very important on the overall performance of the

BEM. The current state of the code developed, could certainly be

enhanced by further improvements of the plane strain Green's function.

U-
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APPENDIX

COMPUTER PROGRAMS: BASIC STRUCTURE 0

Anti-Plane Strain Case

Figure A.1 illustrates the flow chart for the anti-plane strain

program. The following are descriptions of the contents of the main

program and subroutines.

S

MAIN PROGRAM: Calls three subroutines IMPUT,FMAT, and INTER.

IMPUT: Calls and defines all the variables necessary to solve the

problem from a data file. These variables are the number and coordinates

of the boundary elements on all cavities, number of cavities, the

boundary conditions on each element, and the number and coordinates of

the internal points at which a solution is desired. Also defined are the -

shear wave speed, shear modulus, the time increment, and number of time

steps.

FMAT: Calls subroutine GF which will integrate the individual

kernels for displacement and traction. FMAT also calls subroutine KOD

which will provide the boundary conditions at each time step. A system

of simultaneous linear algebraic equations are then formed from these

integrated kernels and known boundary conditions. The unknown boundary

conditions are next solved for by the simultaneous equation solver

subroutine SLNPD using Gauss elimination. Finally subroutine STORE is .

called which stores the displacement and traction history for all surface

elements.

-.
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GF: Integrates the kernels using subroutines ARBIT, FGSH, and FKSH

which are all given in detail in Cole [14].

INTER: Calculates the displacement at any point in the field except

cavity surfaces.

PLOTT: Plots the displacement vs. time for the field points

discussed in subroutine INTER.

Plane Strain Case

Figure A.2 shows the flow chart for the plane strain program. The

following are descriptions of the contents of the main program and

subroutines.

MAIN PROGRAM: Calls three subroutines IMPUT, FMAT, and INTER.

IMPUT: Calls and defines all the variables necessary to solve the

problem from a data file. These variables are the number and coordinates

*of the boundary elements on all cavities, number of cavities, the

boundary conditions on each element, and the number and coordinates of

the internal points at which a solution is desired. Also defined are the

mass density, shear wave speed, dilatation wave speed, the time

increment, and number of time steps.

FMAT: Calls subroutine PSGF which will integrate the individual

kernels for displacement and traction. FMAT also calls subroutine KOD

which will provide the boundary conditions at each time step. A system

of simultaneous linear algebraic equations are then formed from these

integrated kernels and known boundary conditions. The unknown boundary

• -conditions are next solved for by the simultaneous equation solver

subroutine MATSOL using Gauss elimination. Finally subroutine STORE is IV_

called which stores the displacement and traction history for all surface

elements.
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PSGF: Integrates the kernels containing the Green's function and

associated stresses using a Gauss four point quadrature. If any Green's

function does not decay properly after all the wave fronts have passed

then subroutine MODD is called as a smoothing operation (as discussed in

section 4.4).

HUD'S: HUDO,HUD1,HUD2,HUD3,HUD4, and HUD5 are subroutines that calcu-

late individual components of the Green's function.

HUDO: Solves for the infinite space component. I

HUDl: Solves for the PP component.

HUD2: Solves for the SP component.

HUD3: Solves for the PS component.

HUD4: Solves for the SS component.

HUD5: Solves for the SPS component.

STR'S: STRO,STR1,STR2,STR3,STR4, and STR5 are subroutines that

calculate individual components of the stress associated with the Green's

function.

STRO: Solves for the infinite space component.

STRI: Solves for the PP component.

STR2: Solves for the SP component.

STR3: Solves for the PS component.

STR4: Solves for the SS component.

STR5: Solves for the SPS component.

NRSP: Newton's method is employed to solve for the incident S-wave
a-

and reflected P-wave portion of the Green's function. This is

accomplished by computing the roots of complex non-linear equations.

NRPS: Newton's method is employed to solve for the incident P-wave

and reflected S-wave portion of the Green's function. This is

accomplished by computing the roots of complex non-linear equations.
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NEWTPS: Newton's method is used to evaluate the incident angle of a

P-wave and the reflection angle of an S-wave, by obtaining the solution

of two simultaneous non-linear equations.

,NEWTSP: Newton's method is used to evaluate the incident angle of an

S-wave and the reflection angle of a P-wave, by obtaining the soliution

of two simultaneous non-linear equations.

INTER: Calculates the displacement at any point in the field except

on cavity surfaces.

PLOTT: Plots the displacement vs. time for the field points

discussed in subroutine INTER.

A complete listing of the computer programs may be obtained by

writing to Dr. Martin H. Sadd, Department of Mechanical Engineering and

Applied Mechanics, University of Rhode Island, Kingston, RI, 02881.
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